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Abstract The influence of noise on mode-loc!&g bifurcations is investigated for the circle 
map and for coupled logistic maps. The technique based on the cumulant expansion is used for 
the bifurcation analysis of these systems. It is shown that this cumulant analysis in Gaussian 
approximation provides a suitable description of the influence of weak noise. We find that the 
universal scaling properties for the circle map in the critical p i n t  for the golden-mean sequence 
are the same as those obtained analytically using the path integral technique. We find the same 
scding behaviour in the case of weak multiplicative noise. 

One of the typical routes to chaos is the transition from quasi-periodic oscillations to a 
chaotic attractor, the.so-called Ruelle-Takens route [1,2]. This can be observed in a wide 
variety of physical systems, from electrical circuits [3] to the turbulent motion of fluids 
141. During this transition the quasi-periodic motion on the torus is replaced by a chaotic 
motion whereby the toms is destroyed. Moreover, this route is accompanied by a sequence 
of mode-locking bifurcations on a torus. 

The most popular model for the investigation of the universal properties for this 
phenomenon is the circle map: 

(1) 

The map (1) may be considered as a nonlinear transformation of the phase of an oscillator of 
period one. The parameters Q and K correspond to the ratio of the unperturbed frequencies 
and the strength of the nonlinearity respectively. In the supercritical case (K > l), map (1) 
is non-invertible and may exhibit chaotic behaviour. 

One of the main methods used to study the properties of quasi-periodic motions is the 
approximation of the irrational frequency ratio 52 by rationales using a continued fraction 
representation. Let us consider the mode-locking sequence generated by the Fibonacci 
numbers 

A e,,, = 8, + Q - - sin (2dk)  mod 1. 2n 

Fn+l = Fn+ Fn-l F, 1 , 1 , 2 , 3 , 5 , 8  ,... 
with the rotation numbers U,: 
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The limit of this sequence 0, is the golden mean as n tends to infinity: 

In the plane of the parameters (Q, K) this corresponds to the existence of tongues which 
bound the mode-locking regions with rotation numbers 0.. The scaling properties of the 
width of these tongues AD2. have been investigated in the critical case (X = 1) 151. The 
width An,, generated by the sequence (2) displays a self-similar structure: 

AQn ct 6-" (4) 
where 6 is the universal constant S = 2.8336.. .. 

The main purpose of this paper is to study the influence of noise on such modelocking 
bifurcations. As soon as noise is taken into account we have to consider the statistical 
quantities of a process and the quantitative changes in them instead of the limit sets in the 
phase space and their bifurcations in the case of a deterministic system [6,7]. Such averaged 
quantities may be the stationary probability density, power spectrum, correlation function, 
etc. In mathematical language this means that the stochastic equations or the appropriate 
kinetic equations have to be solved. The bifurcation analysis of such types of equation is a 
more difficult problem than in the deterministic case. 

The problem of noise influence on dynamical systems was first pointed out in the work 
of Pontryagin et al [SI; they used the formalism of Markov processes to study the influence 
of the extemal noise on dynamical systems. 

Freidli and Wentzell[9] proposed a theory of weak random perturbations of dynamical 
systems based on the concept of quasi-potentials which has been extended to chaotic systems 
[7,10-151. This theory provides a correct description of both the stationary probability 
of the process [7,10-14] and the noise-induced hopping dynamics 114,151. If U' is the 
intensity of weak extemal noise (U' << l), then according to this approach the stationary 
probability density of a system p(x, U) can be expressed via the quasi-potential @(x)  as 
p(x, U) ct exp (-@(x)/u').  Then a bifurcation can be understood as being a change of 
the number of extrema of the quasi-potential or the appropriate probability density. This 
quasi-potential theory provides a rigourous analysis of the scaling properties of dynamical 
systems and was shown, for example, for period-doubling bifurcations [Il, 121 and mode- 
locking bifurcation [13]. The main advantage of this technique is that it is also applicable 
to non-Gaussian perturbations. However, the computation of bifurcational lines as well as 
the continuation of a stationary solution in parameter space is still a non-hivial numerical 
problem. 

In this paper we use another approach based on the cumulant expansion of stochastic 
systems. The cumulant approach assumes the transition from stochastic equations (or from 
the appropriate kinetic equation) to deterministic equations which describe the evolution 
of the cumulants of a stochastic process (cumulant equations) [16]. The main problem 
that arises is due to the chain of cumulant equations being unclosed because the original 
stochastic system is nonlinear; that is, the equation for the n-order cumulant also includes 
higher order cumulants n+l ,  n+2, . . .. To close this chain of the cumulant equations we use 
approximations which take into account only a finite number of cumulants [16]. After that 
closure we can, therefore, carry out an ordinary bifurcation analysis [17,18] of the cumulant 
equations. The bifurcations of the steady states of the cumulant equations correspond to the 
qualitative changes of the shape of the stationary probability density of a Markov process. 
A rather simple approximation which includes first- and second-order cumulants is the 
Gaussian approximation; it provides a correct description of the behaviour of a stochastic 
system with well separated potential minima. Nevertheless, as has recently been shown this 



Noise influence OR mode-locking bifurcations 2473 

approximation often describes the influence of weak noise on the bifurcation analysis of 
a phase transition induced by coloured noise [I91 and on the analysis of period-doubling 
bifurcations in the presence of noise [ZO]. As we will show, the cumulant equations in the 
Gaussian approximation reflect the main features of the stationary probability density even 
near bifurcation points. 

As a study has already been made for the deterministic case, we focus mainly on the 
circle map using the sequence of Fibonacci numbers of modelockings. In the first part we 
investigate the scaling properties in the critical case (K = 1) under the influence of additive 
noise using the method of cumulant equations. This method also allows us to treat the case 
of multiplicative noise in the same manner; we will outline this in the second part. Finally, 
we apply this method to one special resonance tongue for two coupled logistic maps. 

In the simplest case the influence of noise on a system can be considered by adding a 
source of white noise ek:  

(5) 

where & is Gaussian white noise with a zero mean value. If some noise with an intensity 
cr is added to the map (1) then the tongues become narrower and there exists a maximum 
value of the noise intensity U:= (for each of w,) beyond which it is impossible to resolve 
those resonances. The universal scaling law for the noise intensity U,"" in the critical point 
K = 1 yields 151 

K .  = e k  f - - sin ( b o k )  f U f k  
2 X  

0,"" c( 6" (6) 
where ,9 is the universal scaling constant 6 = 2.306. . .. This result was obtained analytically 
by using the functional path integral approach [ 2 1 ]  and the quasi-potential method [131. 

Now we apply the cumulant approach to this problem. Let us introduce the notions for 
the cumulants: 

xk (0,) yk E (0,') - @k)' U) 
where the brackets (.) denote the averaging over realizations of the stochastic process 
&. We derive the equations for the cumulants in the Gaussian approximation d~ec t ly  
from the stochastic map (5). Taking into account that in the Gaussian approximation 
( s i n ( 2 r r 8 k ) )  = exp (-&'yk) s i n ( 2 n x k )  we obtain 

xx+l = Xk t ~2 - - exp ( - ~ n ' y k )  sin ( Z K X ~ )  

yk+I = ya + -(L(I - exp (-8rr'yr.) cos (47rxk)) - exp (-4rr'yk) sin (2~1xa)') 

K 
2rr 

(8) 
K2 

479 
-2K eXp ( -2Z'yk)  COS (2ZXk)yk +U'. 

In the weak noise limit we can simplify this map by neglecting the terms of an order higher 
than yk .  This means that in the second equation only terms linear in yx are taken into 
account: 

K 
2rr Xk+l = X k + n - - ( 1  -b2yk)Sin(2aXk) 

yk+l = (1 - K COS (2Kxk))'yk + U'. (9) 
The initial conditions for the cumulant map (9) are xo = BO and y o  = 0, where 00 is the fixed 
point of the appropriate deterministic map (1). Note that this dynamical system involves a 
new parameter-the noise intensity U. Therefore, we have to consider our system in the 
extended parameter space (K, S2, U). 
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Figure 1. The probabilily density of the map (5)  obtained from numerical simulations. (a) 
Full s m .  (b) Marked maximum; dots correspond to the numerical simulation and the solid 
curye corresponds to the Gaussian appmximation (10). 

Firstly, in figure I(a) we show the result of the numerical calculation of the probability 
density P(0)  for the original stochastic map (5). The parameters are (S2 = 0.61, K = 
1.0, U = 10") which correspond to the modelocking resonance with the rotation number 
w5 = $. Because of the period eight cycle on the torus the probability density consists of 
8 maxima and as shown in figure l(b) each of these maxima can be approximated by the 
Gaussian distribution Pi)@): 

where A-:) and y i )  are the coordinates of the ith component of the fixed point of cumulant 
map (9) for the same parameter values. The same pictures can be obtained for other rotation 
numbers. Thus, we have indications that the Gaussian approximation gives an appropriate 
description of the structure of the probability density. 

Secondly, we perform the bifurcation analysis of the cumulant map (9) in the parameter 
plane (Q, U )  along the sequence of rotation numbers leading to the golden mean. For 
this purpose we used the software L O B I F  [18]. The bifurcation lines plotted in figure 2 
correspond to the biah of resonant cycles with rotation numbers o. = i, 5.2, and 4. 
The condition for these bifurcations is that there exists equality of one of the characterishc 
multipliers of the fixed point to +l. From this diagram it is obvious that boundary values 
of the noise intensity U"- exist beyond where the appropriate mode-locking with rotation 
number U. can be observed. In figure 3 we show the evolution of the numerically obtained 
probability density for the resonance 0 5  = $ (Q = 0.61) with increasing values of the noise 
intensity U* = These values of the noise intensity correspond 4 x 10". 7 x 
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0.50 1 
0.45 

Figure 2. Bifurcation diagram of the cumulant map (9) (y = 0.292, K = I), 

to the points on the bifurcation diagram (figure 2) inside the region of existence of this 
resonance, the boundary, and just beyond the boundary. Observe fiom this figure that 
noise-induced transitions appear between wells of the appropriate potential. This, of course, 
cannot be described by Gaussian approximation. Nevertheless, these changes of modality of 
the probability density are in good agreement with the predictions of the Gaussian cumulant 
analysis. 

It is essential to mention that the sequence unman satisfies the scaling law unman z p,;: 
with pm c 2.23 (cf figure 4). Note that the cumulant approach gives a scaling constant 
which is in good agreement with the theoretical on& 

If we consider the full set of cumulants then we can correctly describe the hopping 
dynamics but we cannot observe any bifurcations as mentioned in [221. In the absence 
of noise in the resonance case we have several locally stable fixed points of the map (1) 
which are separated by saddle points. As soon as Gaussian noise is added, we have only 
one globally-stable stationary solution (the stationary probability density) of the appropriate 
Frobenius-Perron equation. If we vary the parameters of the system we only obtain changes 
in the shape of the stationary probability density (which can be understood as bifurcation 
transitions [6]) but no bifurcations in a rigourous mathematical sense. These bifurcations 
can be determined if we approximate each maximum of the probability density by a model 
distribution, in the simplest case by the Gaussian distribution. The location of the maxima 
of the probability density will then be defined mainly by the first cumulant of the cumulant 
map (9). The second cumulant allows us to take into account the influence of noise in the 
first order by the parameter uz. The bifurcation picture remains qualitatively still the same 
if we include high-order cumulants (we include two more cumulants of third and fourth 
orders). 

In the same manner we can consider the case of coloured noise, i.e. when the correlation 
function of h is not a 8 function of the time difference. In this case the process 0~ is anon- 
Markov process. The usual approach is based on the extension of the stochastic map (5) by 
introducing an additional stochastic map which describes the coloured noise. For example 
we can use a discrete analogue of the Omstein-Uhlenbeck process, an autoregressive process 
of first order, as has been done for the period-doubling bifurcation [20]. 

'This approach to the study of cumulant equations also allows us to treat the case 
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6 ,  I 

Figure 3. The probability densities of the map (5)  obtained from numerical simulations for 
S2 = 0.61 and for the noise intensity cz = 4 x 7 x (from above). 

of multiplicative noise. To our knowledge there are no analytical results concerning the 
influence of multiplicative noise on mode-locking bifurcations. Let us now consider this 
case which can be achieved by a stochastic modulation of the parameter K of the map (1). 
In this case we can write the stochastic map in the form: 

&+I + - - +ek sin (2rr0k). (11) 727 

In the limit of weak noise the approach outlined above yields the cnmulant equations 
K 
2R 

Xk+l = Xk + - -(I - 2n2yk) sin ( 2 n X k )  

(12) 
K2 
4?r2 

Yk+l = (1 - K cos (zny))*yk + -2 sin (%Xi ) .  

The result of the bifurcation analysis of this system for the Fibonacci sequence of mode- 
lockings is similar to the result in the case of additive noise (see figure ?.). We obtain the 
same type of bifurcation diagram with a scaling constant &, % 2.26. Thus, the universal 
scaling behaviour (6) has been observed in the case of multiplicative noise as well as 
for additive noise with approximately the same scaling constant. We expect a difference 
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Figure 4. 0;" plotted against n (squares) and its fit by the law &A, = 2.23. 

between the influence of additive noise~and multiplicative noise in the case of noise with 
moderate intensity [22]. 

We now consider another model, namely two coupled logistic maps [3] with additive 
noise sources: 

n.+i = 1 -ax,' + y(y - x) + uti1) (13) 
The noise sources are statistically independent, white random processes with a zero 
mean value symmetrically distributed in the region [ - E ,  E ] ,  E << 1: 

yn+l = I -ay,' + y ( x  - y) +ut:). 

(14) 
8 )  0) (ti' t n + m )  = aijS(m). 

Again, let us introduce the notions for the cumulants of the first and second order: 

x n  = (xn) 

Z" = (&Yn) - (X")(Y"). 

yn E5 (Y") 
2 

v n  = (Y,') - (Y") 2 U" = (4) - (xn) 

In the Gaussian approximation we obtain the following five-dimensional map for the 
cumulants: 
X"+, = 1 -a(X,2 + U") + y(Y,  - X") 
Y,+, = 1 - a(Y,2 + v ~ )  + y(x, - Y.) 
U"+, = (z~x,)'u, + y 2 ( ~ ,  + V. - 22.) - ~ ~ Y X , ( Z ,  - U") + U' 

V"+l = (2aY,)*VG + Y 2 W "  + v, - 22.) - 4ayYn(Z, - v,) + u2 

&+I = ( 4 a 2 ~ , Y n  + w (x. + Y,) + 2 y 2 ) 2 .  - G ~ X ,  + Y')u, - (ky~,, + y2)v.. 
In the absence of noise the bifurcations in this model are well known (cf I3.l). In the 

( y ,  a) plane there is a line of bifurcations to a torus. On this l i e  there is a countable set 
of bifurcation points of codimension two which correspond to the mode-locking resonances 
with rational rotation numbers. Since the rotation number on the line of torus bifurcations 
is a function of two variables a and y ,  it is more difficult to obtain the scaling behaviour as 
in the case of the circle map. That is why we oniy consider in detail the resonance~with the 
rotation number w = 3. In figure 5 (curve 1) we show a part of the bifurcation diagram in 

(15) 
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0.55 
0.26 0.27 0.28 0.29 0.30 0.31 

Y 

Figure 5. Bifurcation diagram of the map (15) on the parameter plane (y .  a )  with U = 0 (curve 
1) and U = (curve 2). 

0.300 

W.294 

0.292 

0,290 

0'300 1 
o.2g8 77 ' ' 

0.296 

W.294 

0.292 

0.288 

Noise intensity 
Figure 6. Bifurcation diagram of the map (15) on the plane (U*, y ) ,  (a = 0.65). 

the parameter plane (y .  a) with the resonance tongue w = $ This tongue is formed by the 
bifurcation lines which correspond to a saddle-node bifurcation of a cycle of period ten. 

If we impose weak noise on the system then the modelocking resonance p / q  will 
correspond to the cycle of the cumulant map (15) of the period p q .  This resonance tongue 
on the parameter plane (y .  a) becomes narrower if noise is taken into account (see figure 5, 
curve 2). Let us consider the bifurcation diagram on the parameter plane (U, y )  (see figure 6). 
Observe from this figure that again there exists a value of noise intensity U,,, which bounds 
the region of existence of this resonance. 

In conclusion, we have shown that the technique of cumulant expansion can be applied 
to the analysis of mode-locking bifurcations even in Gaussian approximation. This method 
provides both a qualitative description of the bifurcation behaviour and a suitable agreement 
with theoretical results on the universal scaling properties. The advantage of this approach 
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lies in the consideration of a deterministic system instead of the original stochastic system. 
As a consequence, the ordinary bifurcation analysis can be carried out in the extended 
parameter space of the system. An important advantage of this approach is that we can 
treat high-dimensional maps as well as the case of multiplicative noise or coloured noise 
[ZOI. 
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